A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm.

نویسندگان

  • João T Leiva-Neto
  • Gideon Grafi
  • Paolo A Sabelli
  • Ricardo A Dante
  • Young-min Woo
  • Sheila Maddock
  • William J Gordon-Kamm
  • Brian A Larkins
چکیده

Cells in maize (Zea mays) endosperm undergo multiple cycles of endoreduplication, with some attaining DNA contents as high as 96C and 192C. Genome amplification begins around 10 d after pollination, coincident with cell enlargement and the onset of starch and storage protein accumulation. Although the role of endoreduplication is unclear, it is thought to provide a mechanism that increases cell size and enhances gene expression. To investigate this process, we reduced endoreduplication in transgenic maize endosperm by ectopically expressing a gene encoding a dominant negative mutant form of cyclin-dependent kinase A. This gene was regulated by the 27-kD gamma-zein promoter, which restricted synthesis of the defective enzyme to the endoreduplication rather than the mitotic phase of endosperm development. Overexpression of a wild-type cyclin-dependent kinase A increased enzyme activity but had no effect on endoreduplication. By contrast, ectopic expression of the defective enzyme lowered kinase activity and reduced by half the mean C-value and total DNA content of endosperm nuclei. The lower level of endoreduplication did not affect cell size and only slightly reduced starch and storage protein accumulation. There was little difference in the level of endosperm gene expression with high and low levels of endoreduplication, suggesting that this process may not enhance transcription of genes associated with starch and storage protein synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm

Cyclin-dependent kinases, the master regulators of the eukaryotic cell cycle, are complexes comprised of a catalytic serine/threonine protein kinase and an essential regulatory cyclin. The maize genome encodes over 50 cyclins grouped in different types, but they have been little investigated. We characterized a type B2 cyclin (CYCB2;2) during maize endosperm development, which comprises a cell ...

متن کامل

Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication.

Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1...

متن کامل

Investigating the hows and whys of DNA endoreduplication.

Endoreduplication is a form of nuclear polyploidization that results in multiple, uniform copies of chromosomes. This process is common in plants and animals, especially in tissues with high metabolic activity, and it generally occurs in cells that are terminally differentiated. In plants, endoreduplication is well documented in the endosperm and cotyledons of developing seeds, but it also occu...

متن کامل

Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm.

The endosperm of cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly und...

متن کامل

RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway.

Retinoblastoma-related (RBR) proteins regulate cell division in higher eukaryotes by controlling the adenovirus E2 promoter binding factor (E2F)/dimerization partner (DP) family of transcription factors that regulate expression of many genes involved in cell-cycle progression. We identified a previously undescribed member of the maize RBR family, RBR3, which has the characteristic structure and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2004